Chitin (β-1,4-linked natural linear homopolymer of N-acetylglucosamine) is a structural endogenous carbohydrate, which constitutes, together with β-linked glucans, the highly cristaline, water insoluble components of the innermost region of hyphal cell wall of true Fungi. The chitin metabolism is thus crucial to the development and maintenance of fungal cell wall, which is a dynamic structure that gives fungi most of their unique features. This work comprises what is currently known about chitin metabolism in the phytopatogenic homobasidomycete *Crinipellis perniciosa* (Stahel) Singer, the causal agent of witches’ broom disease of cocoa tree (*Theobroma cacao* L.) based on data mining or KDD, knowledge discovery in "The *Crinipellis perniciosa* Genome Project" database and comparison to chitin metabolism of the two published fungal complete genomes of *Saccharomyces cerevisiae* and *Schizosaccharomyces pombe*. The most important differences in chitin metabolism between *Crinipellis perniciosa* and the two yeasts are related to the conversions of: (i) D-fructose-6P to D-glucosamine-6P, (ii) D-glucosamine-6P to N-acetyl-D-glucosamine-6P, and (iii) chitin to chitobiose/chitosan. The biochemical characterization of fungal chitin metabolic pathway is an important step to the development of possible strategies in order to control the hemibiotrophic phytopathogen *Crinipellis perniciosa* in the fungus/plant pathosystem. (Financial support: CNPq)